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Chapter 3

Snowball Sampling and 
Sample Selection in a Social 
Network

Julian TszKin Chan

Abstract
This chapter studies a snowball sampling method for social networks with 
endogenous peer selection. Snowball sampling is a sampling design which pre-
serves the dependence structure of the network. It sequentially collects the 
information of vertices linked to the vertices collected in the previous iteration. 
The snowball samples suffer from a sample selection problem because of the 
endogenous peer selection. The author proposes a new estimation method that 
uses the relationship between samples in different iterations to correct selection. 
The author uses the snowball samples collected from Facebook to estimate the 
proportion of users who support the Umbrella Movement in Hong Kong.

Keywords: Social network; snowball sampling; sample selection; generalized 
method of moment; six degrees of separation; Umbrella Movement

1 Introduction
Snowball sampling is a network sampling design that preserves the informa-
tion of  the network structure (Kolaczyk, 2009). It is an iterative procedure 
of  collecting vertices’ information that is linked with vertices collected in the 
previous iteration. It has several advantages over the simple random sam-
pling. First, all the information of  the network structure is preserved because 
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it collects samples through the network connections from previous samples. 
This is essential in obtaining unbiased estimates for the network structure, 
such as the average number of  friends (also known as the average degree of  a 
vertex). Simple random sampling leads to measurement error and bias in esti-
mates as network structure is not preserved (Chandrasekhar & Lewis, 2011). 
Second, snowball sampling is a cost-efficient method for collecting samples. 
Researchers can quickly obtain large amount of  data by collecting information 
from the vertices linked with the samples in the previous iteration. For exam-
ple, researchers can collect data from neighbors, friends, or family in the initial 
samples. In some cases, collecting data through snowball sampling would be 
easier than through traditional random sampling. For example, if  research-
ers want to collect information from Facebook or Twitter, snowball sampling 
provides a natural way to collect data through the connections of  the agents 
in the social network.

However, snowball samples are subject to sample selection problem because 
people are more likely to associate with others like themselves. This is a com-
mon phenomenon in social network called the homophily principle of social 
network (McPherson, Smith-Lovin, & Cook, 2001). For example, male students 
could be more likely to have male friends than female friends or people with 
similar political views are more likely to be friends. As a result, samples col-
lected with snowball sampling are correlated with the previous samples and the 
initial samples determine the distribution of the rest of the samples. Therefore, 
if  the initial samples do not come from a random sample or if  the sample size 
is small, the sample selection problem could be severe and the estimates using 
snowball sampling could be biased. Although the bias would be reduced as the 
number of iterations of the snowball sampling increases, the number of itera-
tions rarely exceeds 5. If  the number of iterations is larger than 5, it is likely the 
researchers collect data from the whole population. This is known as the six-
degree separation theory or the small world problem (Gurevitch, 1961; Milgram, 
1967). The theory states that on average, the friendship distance between two 
individuals is about 6. The famous postcard experiment by Travers and Milgram 
(1969) showed that the average distance between two individuals is about 5.7. 
More recent studies (Backstrom, Boldi, Rosa, Ugander, & Vigna, 2012; Ugander, 
Karrer, Backstrom, & Marlow, 2011) indicated that the average distance between 
Facebook users in May 2011 was 4.7 and the average distance between individuals 
in the United States at the same time was 4.3.

Here is an example that illustrates the sample selection problem of snowball 
sampling. Suppose we are interested in the proportion of the types of agents. Let 
Yi ∈ {0, 1} be the type of agent i. The objective is to identify P1≡ (Yi = 1). Let 
the proportion of agents with type 0 be 0.5; that is, P0 = 0.5. Researchers have 
an initial sample of 10 agents, 7 of whom are type 0. Agents with the same type 
are more likely to be connected. Suppose, on average, 8 of 10 friends of an agent 
are the same type as the agent. When researchers start to collect more samples 
using the snowball sampling method, we expect the proportion of different types 
of agents to be correlated with the initial samples. In this example, the expected 
proportion of different types would be
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Therefore, if  the initial samples were not drawn from random samples, then the 
estimates from the snowball samples suffer from the same sample selection prob-
lem as in the initial samples.

As the number of iterations of the snowball samples goes to infinity, the pro-
portion of types will converge to (0.5, 0.5)1:
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As mentioned earlier, this result is not feasible in the data collection process 
because of the small world theory.

In this chapter, we propose a new estimation method that uses the relation-
ship between the samples in different iterations to correct for the sample selection 
problem. Although the snowball samples are subject to sample selection bias, the 
information about the network connections is not. The average number of type  
0 friends of an agent of type 1 can be consistently estimated despite the propor-
tion of the types of agents selected in the initial samples. We could use this infor-
mation to construct consistent estimates of the proportion of the types of agents. 
Further, we could determine a weight for the samples based on the estimates of 
the proportion of the types of agents to adjust for the sample selection problem 
for other statistical models such as regression.

The proposed method relies on two observations. First, the adjacency matrix of 
an undirected graph is symmetric. When we observe a type 1 friend of a type 0 agent, 
there must be a corresponding type 1 agent who is a friend of the same type 0 agent. 
Therefore, the total number of links from the type 0 to the type 1 agents and links 
between type 0 and type 1 agents must be the same in the population.

Second, we can consistently estimate the average number of friends of an agent 
given her type. This is possible because the snowball sampling method preserves 
the dependence structure of the network; hence, we can consistently estimate the 
average number of friends. This is an important feature of the snowball sampling 
method. Although the snowball samples are subject to sample selection, the sam-
ple selection does not play a role in the estimation of the number of friends given 
the types of an agent. In addition, we are considering the average number of 
friends of an agent given their types. The initial proportion of the types of agents 
would not affect this conditional expectation. Using these two observations, we 
derived the moment equations for the model, estimate the proportion of the types 
of agents by generalized method of moment and derive the asymptotic distribu-
tion of the estimator.

As an empirical application, we collect snowball samples from Facebook to 
estimate the proportion of users who support the Umbrella Movement in Hong 
Kong in 2014. The Facebook users changed their profile pictures to yellow rib-
bons to show their support for the movement and blue ribbons to show their 



64	 Julian TszKin Chan

support for the government and the police. We find that the sample proportion 
is underestimated by 40% of the proportion of users who changed their profile 
pictures to blue ribbons.

We define the snowball sampling method and discuss the setup of our model in 
Section 2. Then we will discuss the estimation method and the statistical proper-
ties in Section 3. We conduct some simulation experiments to examine the statisti-
cal properties of the proposed estimator in Section 4. In Section 5, we describe 
the empirical application using the Facebook data we collected. Finally, Section 
6 summarizes the findings.

2 Setup
We follow the definition of snowball sampling method in Kolaczyk (2009) and 
consider only undirected graphs in this chapter. Let G = (V, E) be the population 
graph, where V is the set of all vertices and E is the set of all edges. An edge is a 
pair of vertices {i, j}, where i and j are connected. Let V0 be set of vertices in the 
initial samples and Ci be a set of vertices connected to i; that is, Ci = {j: {i, j} ∈ 
E}. Let N be the sample size of the initial sample. The initial sample may not draw 
from a simple random sample.

In the first iteration, we collect the information of all the vertices connected 
with the vertices in the initial sample that are not included in the initial samples. 
The set of vertices collected in the first iteration is

	 V C V\ .i V i1 00
( )= ∪ ∈ 	 (3)

The second iteration follows the same procedure but we are collecting all the 
vertices connected with vertices in V1 except those in V0 and V1.

Each of the vertices i ∈ ∪t = 0,…,TVt has a variable y that takes a discrete value 
(y ∈ {0, 1}), where T is the number of iterations of the snowball samples.

Our objective is to estimate (y = 0) or construct a weight wi such that ∑i 
wi1(yi = 0) consistently estimates (y = 0). The information of the edges is rep-
resented by an adjacency matrix A. The {i, j} element of A is equal to 1 if  i 
and j are connected, otherwise 0. Once we have an estimate, P̂0, it is easy obtain 
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In this setup, we assume T to be small and consider large N asymptotic. In 
fact, we can have a reasonable sample size even if  N is small. The actual sample 
size is roughly NdT, where d is the average number of connections. The actual 
sample size increases exponentially by T. For example, suppose the average num-
ber of connections is 10. When N = 5 and T = 1, the actual sample size is 50. 
When T = 2, the actual sample size is 500. In our empirical example, the average 
number of connections of a Facebook user is over 250.

We do not assume the initial samples are random and start with a small initial 
sample that is subject to sample selection and collect data using the snowball 
sampling.
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3 Estimation
The estimation strategy is based on two observations on the adjacency matrix of 
an undirected graph and the snowball sampling.

First, the adjacency matrix of an undirected graph is symmetric. When we 
observe a type 1 friend from a type 0 agent, there must be a corresponding type 
1 agent who is a friend of the same type 0 agent. Therefore, the total number of 
links between the type 0 and the type 1 agents and links from type 0 to type 1 
agents must be the same in the population.

The second observation is that the characteristics related to the social network 
of an agent conditional on the type of the agent are not subject to the sample 
selection problem caused by the initial sample.

When the initial sample is subject to sample selection, the sample average of 
the types of the snowball samples is biased and inconsistent. However, the ini-
tial proportion of the types does not play a role in the characteristics related to 
social network of an agent given her type. We can consistently estimate the aver-
age number of friends of an agent given her type because the snowball sampling 
preserves the dependence structure of the network; hence, we can consistently 
estimate the average number of friends.

As long as we are estimating statistics that are conditional on the type, the 
proportion of types in the initial sample does not play a role. For example, the 
consistency of the number of connections of a type 0 or type 1 agent does not 
depend on the number of observations of type 0 and type 1 agents.2 Therefore, 
we can consistently estimate the expected number of different types of friends 
conditional on the type of an agent.

The first observation provides the basis for the moment equations, and the 
second observation provides a means to estimate the moment equations. We will 
discuss the estimation method by introducing the moment equations of the popu-
lation. For simplicity, we start with two types of agents.

3.1 Moment Equation

The number of type a ∈ {0, 1} of agent i is defined as
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The average number of type a friends of a type b agent is
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Because the graph is undirected, we have j ∈ Ci if  and only if  i ∈ Cj for all i ≠ j ∈ 
V. For every type a friend of a type b agent, there must be a corresponding type b 
friend of a type a agent, that is,

	 d y a d y b1 1 .i b i i a i, , ( ) ( )( ) ( )× = = × = 	 (6)
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Combining equations (5) and (6) results in the following moment equation:
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Rearranging the equation, the odd ratio of type a agents is
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or the proportion of type a agents is
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Equation (9) indicates if  we can consistently estimate the expected number of 
type a friends of the type b agents, then we can have a consistent estimate of the 
proportion of type a agents. This result is implied by the symmetricity of the 
adjacency matrix of an undirected graph.

3.2 Sample Moment Equation

Using the snowball sampling method, we collect the information of all the friends 
of the samples in the previous iteration. For example, if  we have 10 agents in the 
initial iteration, then we will collect the information of all the friends of these 10 
agents. Thus, we can estimate the value of db|a by computing the average number 
of type b friends of a type a agents. The estimator of db|a is defined as

	 d N y a y bˆ 1 1 ,b a a i j
j C y bi V

|
1

,i j0

∑∑ ( )( )= = =−

∈ =∈

	 (10)

where N y a1a ii

N1 ∑ ( )= =− . We can define the estimator of d̂a b|  in the same way. 

Notice that d̂b a|  and d̂a b|  are consistent even if  the initial sample is subject to sample 
selection in terms of types. The initial proportion of the types of agents does not 
affect the consistency of the estimation of db|a because it is conditional on the 
type of agents. The initial proportion of types of agents affects only the variance 
of d̂b a|  and d̂a b|  because it affects the number of observations of different types of  
agents.

Combining equations (9) and (10), the estimator of (yi = a) is
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3.3 Asymptotic Distribution

In this section, we discuss the assumptions and derive the asymptotic distribution 
of the proposed estimator.
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Assumption 3.1. Conditional on the types of agents, the samples are independ-
ent and identically distributed and Var(di|a|yi = b) < ∞, ∀ a ≠ b,

The sample selection problem studied in this chapter is focused on the selec-
tion of the types of the agents. The estimation does not rely on how the research-
ers select the proportion of the types. However, given the types of the agents, the 
samples collected are assumed to be independent and identically distributed.

Assumption (3.1) is not a necessary condition. If  the number of friends of 
different types for different types of agents satisfied the Linderberg condition:
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where s Var d y a1a N i b ii

N

, ,∑ ( )( )= = , then we can use the Linderberg central limit 
theorem instead of the Linderberg-Lévy Central Limit Theorem. For simplicity, 
we will stick with the independent and identically distributed assumption.

Assumption 3.2. >(Ai,j = 1|yi = a, yj = b) > 0 and ∑i,j Ai,j1(yi = a)1(yi =  
b) = Op(N)

Assumption (3.2) requires some links between two types of agents. The iden-
tification of the model relies on the fact that the number of links between type b 
agents and type a agents is always the same as the number of links between type a 
agents and type b agents. The model is not identified if  there are no links between 
different types of agents. It also requires the number of links increases at a slower 
rate the same sample size N. This restricts the type a agents connect to all type b 
agents.

Assumption 3.3. Let N = Na + Nb, where Na and Nb are the initial observations 

of type a and type b agents. As N
N

N
sp, 0,1a
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The initial sample proportion of type a agents converge to a constant propor-
tion 0 < spa < 1.

Proposition 1. Under Assumptions (3.1) to (3.3), the asymptotic distribution 
of the estimator is
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The equation for the variance of  the proposed estimator indicates, when b a|
2σ  

or a b|
2σ  increases, the variance of  the proposed estimator increases. This is an 

obvious result. On the other hand, when db|a or da|b increases, the variance of 
the proposed estimator decreases because the identification strategy depends 
on the number of  type a friends of  an type b agent. When these numbers are 
small, we do not have much information about the network structure between 
two types of  agents; hence, the variance of  the proposed estimator would be 
large.

We can estimate σ2 using the sample variance of da|b and db|a, that is,
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3.4 More Than Two Types

Suppose there are k types of agents and the types are labeled 1, 2, …, k. The 
moment equation can be written as
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identified. When k > 2, we have more moment equations than parameters. We can 
estimate the model by generalized method of moment. The sample analog of the 
moment equations are
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We can arrange the moment equation in the following matrix form:
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Because (yi = k) = 1 − (yi = 1) − … − (yi = k − 1), we can rewrite the 
moment equations as

	 DP D 0k k
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where D D D 1k k k 1
 ( )= −− −

′ , D = [D−k, Dk], P = (P−k, Pk), and 1k−1 is a k − 1 × 1 
vector of ones.
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Similar to equation (10), we replace db|a for any a ≠ b with their sample analog 
d̂b a| . The generalized method of moment estimator is the solution of
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The first-order condition of the above minimization problem is
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We can rewrite the moment equations in equation (18) for any a ≠ b as
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Please see Section 7 for the derivation.
Let S = plimN−1 ∑i hih

′
i.

3 The diagonal elements of S are
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There are two possible cases for the off-diagonal elements. Each of the moment 
equations links two types of agents. When we look at the covariance of a pair of 
moment equations, if  all the types of agents are different in both moment equa-
tions, then the covariance of the moment equations is 0.

When there is one common type of agent, the covariance of the moment 
equation is

	 P spb c a a a, |
2 1σ − 	 (25)

where σb,c|a = Cov(di|a|yi = b, di|a|yi = c).
If  there are two common types of agents between moment equations, this 

implies two moment equations are the same and the covariance would be the 
variance of the moment equation.

Proposition 2. Under Assumptions (3.1) to (3.3) for all a ≠ b and a, b ∈ 1, …, 
k, the asymptotic distribution of the generalized method of moment estima-
tor is

	 N P P Nˆ 0,k k( ) ( )− → Ω 	 (26)
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When k = 1, the asymptotic variance of Pa
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which is the same as the result in the previous section.

3.5 Optimal Weighting

We can obtain a more efficient estimator by setting the weighting matrix, W Ŝ 1= − , 
where S Sˆ

p
1→− . The element of S is defined in equations (24) and (25). The 

terms a
2σ , spa, and σb,c|a for all a ≠ b ≠ c can be estimated from the samples, and Pa 

for all a = 1, …, k can be estimated using the procedure in the previous section by 
assuming the weighting matrix to be identity matrix. The limiting variance of the 
estimators would become (D′S−1D)−1.

The proportion of  types of  agents in the initial sample could affect the 
asymptotic variance of  the proposed estimator. For example, when k = 2, the 
variance is
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4 Simulation
In this section, we conduct a simulation experiment to study the sample selection 
problem in the snowball sampling and the performance of the proposed method. 
We have two different setups for the simulation. In the first setup, we simulate the 
social network by the stochastic block model by Holland, Laskey, and Leinhardt 
(1983). In the second setup, we draw a subsample from the social network data 
collected in the first and second chapters. In both setups, we assume two types of 
agents.

4.1 Data Generating Process: Stochastic Block Model

The stochastic block model (Holland et al., 1983) is a model for network forma-
tion. It assumes k types of vertices and the probability of having a link between 
type a vertex and type b vertex is a constant parameter Pa,b. In our simulation, 
there are two types of vertices, type 0 and type 1. Let y0 be a vector of binary vari-
ables; the ith element of y0 = 1 if  vertex i is of type 0, otherwise 0. Similarly, the 
ith element of y1 = 1 if  vertex i is of type 1.
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The probability of the adjacency matrix is
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where P0,1 = P1,0 and Ai,j = Aj,i.
In the simulation, we assume the population size of the network is 500 and 

control the probability of the link by the expected connections between types of 
agents:

	 P
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To study the sample selection problem and the performance of the proposed 
estimator, we change the proportion of type 0 vertices in the initial sample, the 
proportion of type 0 vertices in the underlying data generating process, and the 
probability of the connections between two types of agents. Table 1 shows the 
simulation results when vertices are homophilic, which means two vertices with 
the same type are more likely to have a connection than two vertices with different 
types. In this simulation, we assume the expected number of connections between 
type 0 and type 1 agents is 500. The values of d0|1 and d1|0 depend on the propor-
tion of different types of vertices in the simulation, shown in Table 1. In addition, 
we assume d0|0 = 5 and d1|1 = 7. That is, on average, type 0 (type 1) vertices will 
have 5 (7) connections to other vertices is also of type 0 (type 1).

The results indicate the sample proportion of the snowball samples suffer from 
sample selection bias, while the proposed estimator does not show bias. In fact, 
we can approximate the sample selection bias of the sample proportion using the 
following equation.
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	 (34)

For example, when the proportion is (0.3, 0.7), the equation gives

	 5 1.43
3.33 7
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After normalization, the sample proportion is (0.298, 0.702) and the bias is close 
to 0. Another example, when the proportion is 0.5 and initial proportion is 0.3, 
the equation gives

	 5 2
2 7
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	 (36)

After normalization, the sample proportion is (0.345, 0.655), and the bias is 
–0.155. Both examples give numbers similar to the simulation results.

Table 2 shows the simulation results when vertices are heterophilic, which 
means two vertices with the same type are less likely to have a connection than 
two vertices with different types. In this simulation, we assume the expected num-
ber of connections between type 0 and type 1 agents is 1,000. The values of d0|1 
and d1|0 depend on the proportion of different types of vertices in the simulation 
as shown in Table 6. In addition, we assume d0|0 = 3 and d1|1 = 3. That is, on aver-
age, type 0 (type 1) vertices will have 5 (7) connections to other vertices also of 
type 0 (type 1).

Table 1.  Simulation Results of the Estimators (Vertices Are Homophilic,  
d0|0 = 5 and d1|1 = 7).

True Initial Sample Proportion Proposed Estimator

d1|0 d0|1 Proportion Proportion Bias SD RMSE Bias SD RMSE

3.33 1.43 0.30 0.30 0.00 0.02 0.02 0.00 0.05 0.05
3.33 1.43 0.30 0.50 0.09 0.03 0.09 −0.00 0.05 0.05
3.33 1.43 0.30 0.70 0.17 0.03 0.17 −0.00 0.05 0.05
2.00 2.00 0.50 0.30 −0.15 0.03 0.15 0.01 0.06 0.06
2.00 2.00 0.50 0.50 −0.07 0.03 0.07 0.00 0.05 0.05
2.00 2.00 0.50 0.70 0.03 0.03 0.04 −0.01 0.06 0.06
1.43 3.33 0.70 0.30 −0.28 0.02 0.28 0.00 0.05 0.05
1.43 3.33 0.70 0.50 −0.21 0.03 0.21 −0.00 0.04 0.04
1.43 3.33 0.70 0.70 −0.12 0.03 0.12 −0.00 0.04 0.04

Table 2.  Simulation Results of the Estimators (Vertices Are Heterophilic,  
d0|0 = d1|1 = 3).

True Initial Sample Proportion Proposed Estimator

d1|0 d0|1 Proportion Proportion Bias SD RMSE Bias SD RMSE

6.67 2.86 0.30 0.30 0.11 0.03 0.12 0.00 0.03 0.03
6.67 2.86 0.30 0.50 0.08 0.03 0.08 −0.00 0.03 0.03
6.67 2.86 0.30 0.70 0.05 0.03 0.05 −0.00 0.04 0.04
4.00 4.00 0.50 0.30 0.02 0.03 0.04 0.01 0.04 0.05
4.00 4.00 0.50 0.50 −0.01 0.03 0.03 −0.00 0.04 0.04
4.00 4.00 0.50 0.70 −0.04 0.03 0.04 −0.00 0.04 0.04
2.86 6.67 0.70 0.30 −0.06 0.02 0.06 0.00 0.04 0.04
2.86 6.67 0.70 0.50 −0.09 0.03 0.09 0.00 0.03 0.03
2.86 6.67 0.70 0.70 −0.12 0.03 0.13 −0.00 0.03 0.03
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The simulation results also indicate the sample proportions are biased and the 
proposed estimators are unbiased.

4.2 Data Generating Process: Subsample of Social Network Data

In this setup, we draw a subsample from social network data discussed in the first 
and second chapters. We select all grade nine students with at least one friend in a 
school in the dataset used in the first and second chapter. There are 194 students 
with at least one friend, 73 of them were male, and 121 of them were female. The 
proportion of male students was 37.62%. Fig. 1 shows the visualization of the 
friendship network. Each vertex is a student, and the shape of the vertices rep-
resent gender of the students. If  two students are friends, they are linked with a 
black edge. As indicated in Fig. 1, students are more likely to have friends of the 
same gender. This observation motivates the sample selection bias in the snow-
ball sampling. Table 3 shows the average number of friends for each student by 
gender. The first row shows the average number of female friends by gender of 
female students, and the second row shows the same statistics for male students.

Fig. 1.  Friendship Network of Students from the Same Grade and School.
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In the simulations, we drew from the data n ∈ {20, 40, 60} students, with the 

proportion of male students being equal to 
N

N
0.3,0.40,5,0.6,0.7male { }∈ , with 

replacement and then collected the information of their friends with the snowball 
sampling.

Table 4 shows the simulation results. The proportion of male students was 
37.62%. In general, the sample proportion was biased because of the sample 
selection problem of the snowball sampling. The bias of the proposed estima-
tor is much smaller than the sample proportion. When the sample size is small 
(N = 20), we still observed a small bias in the estimator. The bias decreases as the 
sample size increases.

The standard error of the proposed estimator is much higher than it is for the 
sample proportion because the expected number of female friends of a male stu-
dent and the expected number of male friends of a female student is very small. 
They are equal to 0.438 and 0.264, respectively. Since the identification strategy 
relies on these two quantities, if  both of them are very small, the variance of the 

Table 3.  Average Numbers of Friends by Gender.

Male Friends Female Friends

Female students 0.264 4.959
Male students 3.836 0.438

Table 4.  Simulations of the Estimators Using Social Network Data.

Initial Proportion of
Male Students

Sample Proportion Proposed Estimator

Bias SD RMSE Bias SD RMSE

N = 20

0.350 −0.058 0.041 0.320 0.040 0.281 0.502
0.450 0.025 0.043 0.403 0.001 0.267 0.462
0.500 0.067 0.043 0.445 −0.014 0.258 0.445
0.550 0.111 0.044 0.490 −0.021 0.276 0.450
0.650 0.200 0.045 0.578 −0.056 0.273 0.421

N = 40

0.350 −0.060 0.029 0.317 0.017 0.190 0.436
0.450 0.026 0.029 0.403 −0.000 0.178 0.416
0.500 0.068 0.032 0.446 −0.006 0.184 0.413
0.550 0.112 0.031 0.489 −0.019 0.189 0.404
0.650 0.202 0.032 0.578 −0.025 0.201 0.405

N = 60

0.350 −0.059 0.024 0.318 0.013 0.154 0.418
0.450 0.026 0.024 0.403 0.005 0.148 0.408
0.500 0.066 0.026 0.443 −0.003 0.150 0.401
0.550 0.120 0.026 0.496 −0.003 0.157 0.405
0.650 0.202 0.026 0.579 −0.010 0.170 0.403
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proposed estimator can be large. The equation of the variance of the proposed 
estimator also suggests the same result. In addition, the number of initial samples 
is small in our simulations. For this reason, the standard deviation of the pro-
posed estimator in the simulations is large.

5 Empirical Application
On September 28, 2014, activists in Hong Kong protested outside the govern-
ment headquarters and then occupied several major roads in the city. The name 
Umbrella Movement was suggested by Adam Cotton on Twitter because the 
umbrellas were used for defense against tear gas. The public quickly accepted 
the name. In the next few months, many young people showed their support for 
the movement by changing their Facebook profile pictures to yellow ribbons or 
yellow umbrellas on a black background. The supporters of the government and 
police changed their profile pictures to blue ribbons.

Telephone surveys are one way to collect opinions of citizens about the move-
ment. However, conducting random sampling of the population to collect the 
data would be costly. It is relatively easy to collect data by snowball sampling 
through Facebook. Our objective is to estimate how many people switched their 
profile pictures to yellow ribbons or blue ribbons.

From an initial sample of 142 individuals from Facebook, we collected 45,785 
individuals through snowball sampling. In total, we had 45,927 profile pictures. 
Each individual is classified as one of the following types: no change, yellow 
ribbons, and blue ribbons. These types corresponded to those who did not change 
their profile pictures, changed their profile pictures to yellow ribbons and changed 
their profile pictures to blue ribbons.

In the initial sample, 46 individuals changed their profile pictures to yellow 
ribbons, 11 changed their profile pictures to blue ribbons, and 85 did not change 
their profile pictures. Of the samples collected through the snowball sampling, 
9,418 changed their profile pictures to yellow ribbons, 468 changed their profile 
pictures to blue ribbons, and 35,899 did not change their profile pictures. Table 5 
shows the summary of the proportion of supporters of the movement and sup-
porters of the government in the initial samples and snowball samples.

The initial samples were not randomly selected. We intentionally selected 
more initial samples with blue ribbons because the proportion of profiles with 
blue ribbons is relatively small. More importantly, the data collected through the 

Table 5.  Sample Proportion of the Types of Profile Pictures in the Samples.

No Change Yellow Ribbons Blue Ribbons Total

Initial samples 85 46 11 142
59.86% 32.39% 7.75%

Snowball samples 35,899 9,418 468 45,785
78.40% 20.57% 1.02%

Total 35,984 9,464 479 45,927
78.36% 20.60% 1.04%
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snowball sampling method were subject to sampling bias because people have 
friends with similar political views. Table 6 shows the average number of friends 
by type for each type in the samples and Table 7 shows the average proportion of 
number of friends by type for each type in the samples.

The proportion of friends with yellow ribbons of a user with a yellow ribbon 
was 29.4%, which is higher than the proportion of friends with yellow ribbons for 
a user with a blue ribbon (12.3%). Similarly, the proportion of friends with blue 
ribbons of a user with blue ribbon was 3%, which is lower than the proportion of 
friends with blue ribbons for a user with a yellow ribbon (12.3%).

The number of friends also plays a role in the sampling bias. The average num-
ber of friends for those who did not change their profile pictures is 337.4. This is 
higher than the average number of friends for those who changed their profile pic-
ture to yellow or blue ribbons, which have 312.2 and 255.64 friends, respectively. 
Users with yellow ribbons had more friends than those with blue ribbons, and 
hence, the snowball samples would be biased toward the proportion of samples 
with yellow ribbons.

Using the proposed method, we solved in moment equation (37) to obtain the 
estimates of the proportion of each type. The estimates are shown in Table 8. The 
estimates of the proportion of users displaying blue ribbons increased to 1.4% 
using the proposed method, which is 40% higher than the sample average of the 
initial samples and samples collected through snowball sampling. This suggests 
the selection bias may greatly affect the estimated proportion.

Since most of the Facebook users in our samples (78%) did not change their 
profile pictures, the proportion of users with yellow and blue ribbons did not 
change much. Focusing on the users who changed their profile pictures made 
observing changes easier. Table 9 shows the proportion of users changed their 
profile pictures to yellow or blue ribbons. In the initial samples, the proportions 
were 80.7% and 19.3%. With the samples collected through snowball sampling, 
the proportions became 95.27% and 4.73%. Finally, using the proposed method, 

Table 6.  Average Number of Friends by Type for Each Type of Sample.

Types Average Number of Friends by Type

No Change Yellow Ribbons Blue Ribbons Total

No change 276.35 57.29 3.76 337.41
Yellow ribbon 218.37 91.41 1.41 312.20
Blue ribbon 214.91 31.18 7.55 255.64

Table 7.  Average Proportion of Friends by Type for Each Type of Sample.

Types Average Proportion of Friends by Type

No Change Yellow Ribbon Blue Ribbon

No change 0.819 0.170 0.011
Yellow ribbon 0.702 0.294 0.005
Blue ribbon 0.847 0.123 0.030
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the proportions were 93.78% and 6.22%. The estimates of the proportion of users 
changed their profile pictures to blue ribbons increased from 4.73% to 6.22%.
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P P

P P

57.29 218.36 0
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1.41 31.18 0
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yellow blue

− =

− =

− =
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6 Conclusion
This chapter proposes a new estimation method that corrects for the sample selec-
tion problem in snowball sampling. The method relies on two important obser-
vations. First, we can consistently estimate the average number of friends of an 
agent given the type of agent. Although the snowball samples are subject to sam-
ple selection, it does not play a role in estimating the number of friends given the 
type of an agent. Second, the adjacency matrix of an undirected graph is sym-
metric. This implies the number of links from type 0 agent to type 1 agent is the 
same as the link from type 0 agent to type 1 agent.

Using these two observations, we derived the moment equations, estimated the 
proportion of the types of agents, and derived the asymptotic distribution of the 
estimator. We also investigated the finite sample properties with two simulation 
studies.

As an empirical application, we used samples collected from Facebook 
to estimate the proportion of  Facebook users who supported the Umbrella 
Movement in Hong Kong in 2014. Facebook users changed their profile pictures 
to yellow ribbons to show their support for the movement and to blue ribbons 
to show their support for the government and the police. The results indicated 
that the simple average of  the proportion in the snowball samples underesti-
mated by 40% the proportion of  Facebook users who changed their profile pic-
tures to blue ribbons.

Table 8.  Estimates of Sample Mean and the Proposed Method Using the 
Snowball Samples.

No Change Yellow Ribbon Blue Ribbon

Initial samples 0.599 (0.041) 0.324 (0.039) 0.077 (0.022)
Initial samples and snowball samples 0.784 (0.002) 0.206 (0.002) 0.010 (0.001)
New method 0.781 (0.028) 0.205 (0.028) 0.014 (0.003)

Table 9.  Estimates of Sample Mean and the Proposed Method Using the 
Snowball Samples.

Yellow Ribbon Blue Ribbon

Initial samples 0.8070 (0.06) 0.1930 (0.035)
Initial Samples and Snowball Samples   0.9527 (0.004) 0.0473 (0.002)
New method 0.9378 (0.06) 0.0622 (0.006)
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7 Proof
Proof of Proposition 1

First, we have to find out the asymptotic distribution of d̂b a|  and d̂a b| . d̂b a|  and d̂a b|  
can be written as,
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The variance and covariance of db|a and da|b are

	 Var d
N
N

Var N A y a y b1 1b a
a

i j i i
i j V

|

2

1
,

,
∑( ) ( ) ( )=









 = =











−

∈

	 (40)

	 Var d
N
N

Var N A y a y b1 1a b
b

i j i i
i j V

|

2

1
,

,
∑( ) ( ) ( )=









 = =











−

∈

	 (41)

	 Cov d d
N
N N

Var N A y a y b, 1 1a b b a
b a

i j i i
i j V

| |

2
1

,
,
∑( ) ( ) ( )=









 = =










−

∈

	 (42)

By Assumption (3.2), Var N A y a y b1 1i j i ii j V
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totic normality of d̂b a|  is implied by the Linderberg-Lévy Central Limit Theorem. 
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where Var N A y a y b1 1i j i ii j V
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Then we apply the delta method to obtain the asymptotic distribution of 
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Proof of equation (23)
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Finally, let
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Notes
1. B ecause agents selected during the previous iteration of snowball sampling, adjust-

ment in the transition matrix is needed. For simplicity, we assume the transition matrix is 
same for every iterations of snowball sampling. The stationary proportion of the types of 
agents is the eigenvectors of the transition matrix.

2. T he variance of the estimator would depend on the number of observations.
3.  h h h hi ii i ii, j∑ ∑=′ ′  because the samples are independent except for the proportion of 

the initial samples.
4.  Pb = 1 − Pa and Var(Pa) = Var(Pb).
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